'Sustainable flight is too difficult'

v

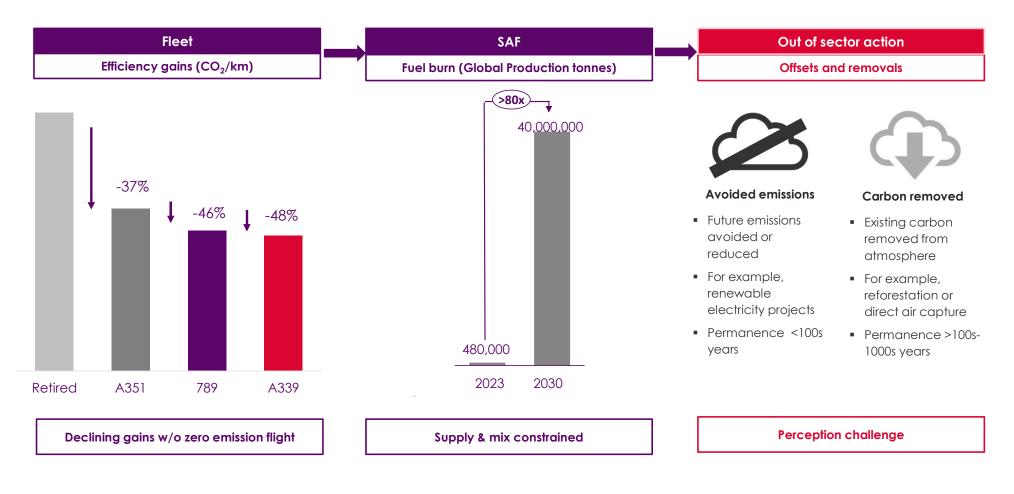
Challenge accepted

Luke Ervine – Head of Sustainability, Virgin Atlantic

BOEING

الميني Department Imperial College London

Ì∠ ICF



University of Sheffield

Why it matters

After fleet renewal, SAF is the only lever for in sector emission reductions for long haul aviation

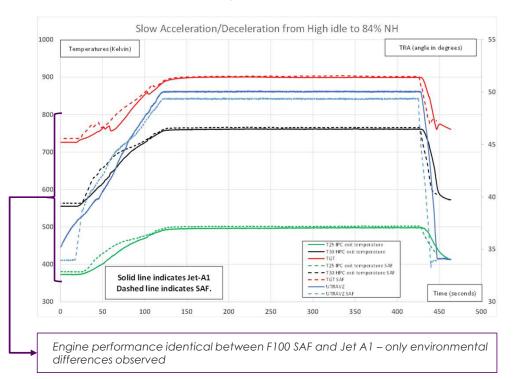


Key results

100% SAF Equivalent safety to Jet A-1	O Engine or airframe mods	 Demonstrated that a wide-body long haul aircraft (in this case Boeing 787-9 with Rolls-Royce Trent1000 engines) can operate100% SAF at an equivalent level of safety to Jet A-1 No modification required or made to airframe, engines or any components
64% Reduction in CO ₂ e	-95 tCO ₂ e	 95 tonnes CO₂e reduction compared to standard LHR-JFK flight End to end life cycle analysis completed – providing replicable framework that can be adopted across industry 64% CO₂e reduction from use of Flight100 SAF blend
+1% Increase in energy	-350 kgs Fuel saved	 Lab analysis findings indicate that Flight100 SAF also delivered a 1% improvement in energy density 34.6 tonnes of fuel burnt – a saving of 0.35 tonnes vs typical flight with Jet A-1 At 10% SAF adoption could reduce total UK fuel burn by 12k tonnes and 400k tonnes globally
40% Reduction in particulates	Likely reduction of radiative forcing contrails	 Flight100 SAF ~40% reduction in particulate matter, increasing to 70% for HEFA component Demonstrating the potential of SAF to reduce environmental impact of non-CO2 emissions Reduction in particulates likely to reduce in-flight creation of persistent radiative forcing contrails
O Contrails	Predictive modelling accuracy verified	 Flight100 verified the accuracy of contrail creation forecasting Incorporated Breakthrough Energy open-source model into flight planning No contrails formed in flight due to higher-than-normal cruising altitude of 40,000 feet
4.4% Fuel reduction through operational efficiencies	-2.2 tonnes Fuel savings	 Flight100 deployed nine ground and flight ops efficiency initiatives avoiding 8.4 tonnes CO₂e ATM and flight path efficiencies delivered 70% of benefit – highlighting opportunity for international collaboration across air traffic management

Unique Blend of SAF

Flight 100 used a mix of 88% HEFA and 12% high aromatic SAK to achieve properties akin to Jet A-1

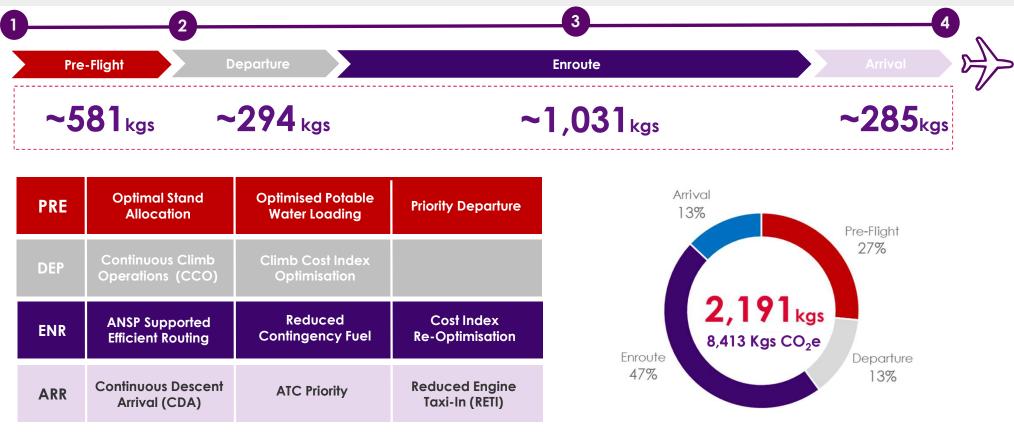

Fuel

F100 SAF mix within all parameters of ASTM criteria and performed akin to Jet A in the engine

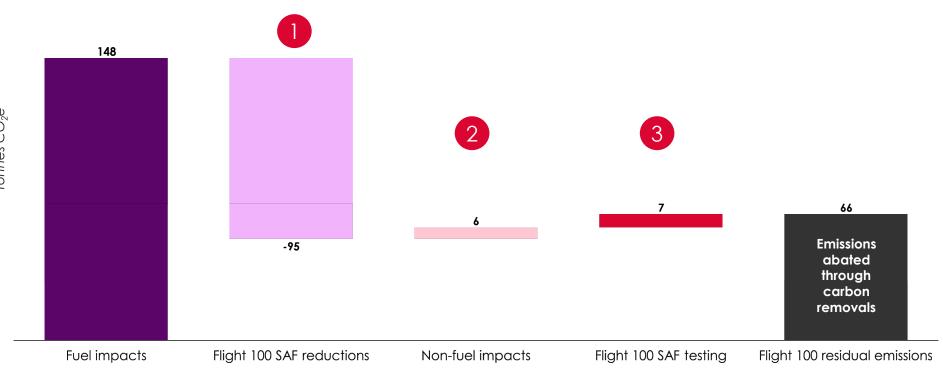
Characteristics vs Jet A (Fuel testing – Rolls Royce)

Property	Method	Units	ASTM D7566 - Annex 2	ASTM D1655 – Jet A1	F100 SAF
Density at 15°C	ASTM D4052	Kg/m3	730-722	775-840	777.7
Aromatics	ASTM D1319	% (v/v)		Max 25	13.1
Distillation					
IBP		°C			148.9
T10			205 max		173.1
T50			Report		224.3
T90	ASTM D86		Report		259.1
FBP			300 max		264
T90-T10			22 min HEFA / 40 min Jet A1		86
T50-T10			15 min Jet A1		51.2
Kinematic viscosity at - 20°C	ASTM D445	cSt	<8cSt	,8cSt	5.063
Kinematic viscosity at - 40°C	ASTM D445	cSt	Not required for neat HEFA - SPK	<12 cSt for blended (<50%)	11.672
BOCLE (lubricity)	ASTM D5001	mm	Max 0.85	Max 0.85	0.67

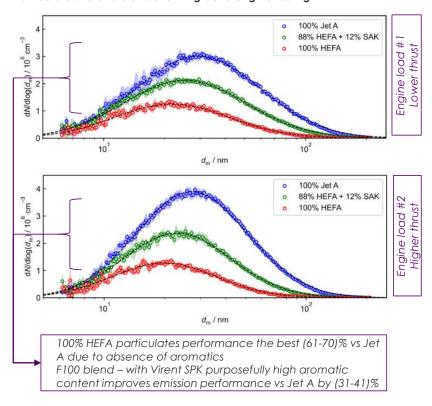
Performance in bench engine test



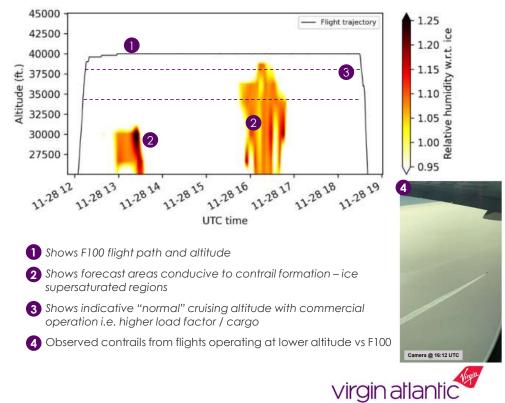
Strictly confidential


Initiatives Breakdown

70% of fuel savings related to opportunities relating to Air Traffic Management – demonstrating the opportunities that exist for airspace modernisation


Flight100 LCA results

Following the use of 100% SAF, Flight100 residual emissions impact was assessed at 66 tonnes CO₂e that could not be mitigated through in-sector measures


Non CO₂

Material benefits on non CO₂ emissions identified in ground testing and validation of contrail predictive software use

SAF effects on aircraft nvPM emissions Particulate size and distribution in ground engine testing

Contrails Forecast of areas likely to produce persistent contrails

Strictly confidential

What next?

Absence of supply side incentives in the UK creates challenging outlook for meeting mandated volumes by 2030

	US	EU	UK	
	No	EU mandate, 6% 2030	UK mandate 10% 2030	
Mandate?	Domestic production target of 3bn USG	No HEFA cap	HEFA cap from 2027	
Production	\$1.75/USG Inflation Reduction Act credit	No tax credits	No tax credits	
tax credits	State tax credits	NO TOX CIEDIIS		
Droduction ground		Innovation fund	£180m GFGS and AFF competitions	
Production grant funding	\$290m over 4 years	Government investment e.g. France €200m		
Airline incentives	State-level tax credits	20m ETS allowances (to bridge SAF price premium)	No support	
		50% HEFA, 75% 2G, 95% e-fuels		
Other support	US Renewable Fuel Standard		Zero rating under UK ETS	
mechanisms	State low carbon fuel standards	Zero rating under EU ETS		

UK setting some of the highest sustainability standards and SAF volume requirements – with no supply side policy support